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C.1.4: Generation of the lentiviral vectors.
 

The lentiviral vector (LV) has proven its efficacy for long-term HSC transduction in mice but also in some clinical trials with no complications reported to date. Dr. Cherqui has an extensive experience on producing and using lentiviral vectors 
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[1]
. We are also collaborating with Dr. Donald Kohn, Professor Microbiology, Immunology and Molecular Genetics and Pediatrics (University of California, Los Angeles). Dr. Kohn’s expertise specifically includes using lentiviral vectors for pre-clinical and clinical trials for ADA-deficient SCID, sickle cell disease and cancer immunotherapy. Dr. kohn provided us with a self inactivated (SIN)-lentiviral vector containing a mutated Woodchuck hepatitis virus Posttranslational Regulatory Element (WPRE) sequence and the ubiquitous human intron-less EF1alpha promoter (EFS) promoter 
 ADDIN EN.CITE 

[2, 3]
. WPRE that stabilizes the transgene message 
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, also overlaps with the woodchuck hepatitis virus X protein, which is a transcriptional activator involved in the development of liver tumors [7]. This potential complication has been avoided by mutating the WPRE sequence, which still induced the long-term expression of the transgene in vivo [8]. EFS promoter is potent enough to express clinically relevant genes 
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[3, 9]
 and greatly decreases the risk of insertional transformation in serially replated HSC [10]. Note that numerous studies show the long-term efficacy of lentiviral-transduced murine bone marrow cells in mouse models for genetic diseases such as Adenosine Deaminase Deficiency (ADA)-deficient mice, Artemis-deficient mice and Wiskott-Alsrich syndrome for recent examples 
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. Recently, Dr. Cartier and colleagues published clinical trial data on HSC gene therapy for X-Adrenoleukodystrophy using a SIN-lentiviral vector. These studies showed reconstitution of both immunological and metabolic abnormalities in 2 patients with no signs of clonal dominance 30 months post-transplant 
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. 
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C.1.4.1: Construction and functionality of the lentivirus vectors in vitro
We subcloned the GFP (LV-GFP) and luciferase (LV-Luc) reporter genes as well as the human CTNS gene (LV-CTNS) in the SIN-lentiviral vector provided by Dr. Kohn. We are working with the human gene and using a vector already used in clinical trials in these mouse model studies specifically as the preclinical proof of concept for a human trial. We verified the integrity of the vectors by restriction enzyme digestions and sequencing. 

We produced infectious lentiviral supernatants using a transient expression of 293T cells with three packaging plasmids (gag-pol, VSV-G and rev) and the expression construct, LV-GFP, LV-Luc and LV-CTNS, resulting in assembly of VSV-G (Vesicular Stomatitis Virus-G glycoprotein) pseudotyped viral particles. VSV-G pseudotyping allows a high efficiency transduction with a wide cell target range and is stable enough for viral supernatant freezing and concentration by ultracentrifugation. Moreover, VSV-G efficiently targets HSC 
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[15, 16]
. The combination of three separate plasmids to provide the complete viral assembly machinery and the use of an LTR-truncated lentiviral backbone (i.e. SIN vector strategy) essentially eliminates the risk of creating replication competent lentivirus (RCL). Testing for RCL by serial infection has been consistently negative in our experience with this method (data not shown). Titers of concentrated virus were measured by infection of 293T cells after serial dilutions of the virus preparation and determined by flow cytometry fro LV-GFP, IVIS imaging system for LV-LUC and RT-qPCR for LV-CTNS as described below. The titers were included between 5x108 to 109 vg/ml. 

The in vitro verification of the functionality of LV-GFP and LV-Luc was determined by measuring transgene expression after transduction of 293T cells. Transgene expression was measured by flow cytometry analysis for LV-GFP and by IVIS imaging system for LV-Luc (Figure 1). A strong GFP expression is observed in 293T cells as well as luciferase expression and the expression is function of the quantity of viral particles added.
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To verify the functionality of LV-CTNS, we transduced Ctns-/- fibroblasts generated from skin of a C57BL/6 Ctns-/- newborn mouse and control wildtype fibroblasts were generated in the same fashion. Virus particles were added directly to the Ctns-/- fibroblasts and the cells collected 48h after. Controls were non-transduced Ctns-/- fibroblasts, wildtype fibroblasts and 293T cells.

RNA was extracted from half of the cells. A CTNS gene-specific RT-qPCR determined the quantity of CTNS mRNA present in each sample. The titer of virus particles is determined by generating a standard curve of serial dilution of of LV-CTNS plasmid DNA. Figure 2A shows the expression of human CTNS in transduced Ctns-/- fibroblasts compared to LV-GFP-transduced Ctns-/- fibroblasts and 293T. No expression is observed for LV-GFP-transduced Ctns-/- fibroblasts as expected. 293T, which are human cells, show the endogenous level of CTNS, which is still significantly less than that achieved in the transduced mouse fibroblasts. The other half of the cells was used for cystine measurements by the UCSD Biochemical Genetics laboratory using mass spectrometry. Figure 2B shows the endogenous level of cystine in wildtype fibroblasts, the high level in LV-GFP transduced-Ctns-/- fibroblasts and the significantly reduced level of cystine in LV-CTNS-transduced Ctns-/- fibroblasts (p<0.05).
These studies were done three times and proved that the CTNS gene is expressed after transduction of cells in vitro with LV-CTNS and that the human version of CTNS is functional in mouse cells because it leads to the decrease of cystine content in the Ctns-/- fibroblasts.

We also performed all the in vitro safety tests of the vectors by serial infection of 293T and showed that our lentivirus vector is replication-incompetent (data not shown).
C.1.4.1: Functionality of the lentivirus vectors in vivo
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To investigate the feasibility of HSC transduction by our lentiviral vector and optimize our protocol, we performed a preliminary in vivo experiment by transducing Sca1+ HSC with LV-GFP. Sca1+ HSC were cultured ex vivo in Stemspan medium (StemCell Technologies) supplemented with murine stem cell factor (mSCF), thrombopoietin (TPO) and murine FMS-like tyrosine kinase 3-ligand (mFlt3L) at a concentration of 100ng/ml and murine interleukin-6 (mIL-6) at a concentration of 20ng/ml. Cells are cultured in plate coated with recombinant fibronectin fragment. Lentiviral vector particles were added at a MOI=10 in presence of polybrene for 16 hours at 37oC. Cells were then collected, washed twice in PBS and resuspended in appropriate volume of PBS. Tail vein injection of 100 l of non-tranduced or LV-GFP-transduced Sca1+ cells was performed in 6 lethally irradiated Ctns-/- mice (3 mice each). One mouse transplanted with LV-GFP-transduced HSC died because of the procedure.
We measured the quantity of GFP+ cells in the red blood cell-lysed peripheral blood of the transplanted mice by flow cytometry at 4 weeks after transplantation (Figure 3). The quantity of GFP+ cells ranged from 50% to 81% depending on the mouse 1-month post-transplant and over 80% 2 months post-transplant. 
Conclusions: Our preliminary data with the lentiviral vector showed a strong transgene expression and a great efficiency for HSC transduction. We will perform a dose titration of lentiviral vector using LV-GFP and LV-luciferase in order to use the minimal quantity of viral particles for optimal HSC transduction.  The follow up of the mice transplanted will also allow us to determine the fate of the transduced cells and the stability of the transgene expression with time. Once the optimal conditions are determined, we will transplant Ctns-/- mice with Ctns-/- HSC transduced with LV-CTNS. The analysis of the transplanted mice will show if transduced HSC have still the potential to engraft in tissues and lead to cystine decrease.
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Figure 1: Functionality of LV-GFP and LV-LUC in vitro. (A) Flow cytometry analysis of 293T transduced with 20 l of LV-GFP virus preparation compared to non-transduced cells. (B) IVIS imaging system analysis of 293T transduced with 100, 20 and 5 l of LV-LUC virus preparation.








Figure 2: Functionality of LV-CTNS. (A) CTNS-specific RT-qPCR showing the expression of CTNS in Ctns-/- fibroblasts after transduction with LV-CTNS. (B) Histogram showing the decrease of cystine level in Ctns-/- fibroblasts transduced with LV-CTNS.





Figure 3: Percentage of GFP-expressing cells in the peripheral blood of 2 Ctns-/- mice transplanted with Sca1+ HSC transduced with LV-GFP compared to 1 negative control.
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