
BASIC RESEARCH www.jasn.org

Protection of Cystinotic Mice by Kidney-Specific
Megalin Ablation Supports an Endocytosis-Based
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ABSTRACT
BackgroundDeletions or inactivatingmutations of the cystinosin geneCTNS lead to cystine accumulation
and crystals at acidic pH in patients with nephropathic cystinosis, a rare lysosomal storage disease and the
main cause of hereditary renal Fanconi syndrome. Early use of oral cysteamine to prevent cystine accu-
mulation slows progression of nephropathic cystinosis but it is a demanding treatment and not a cure. The
source of cystine accumulating in kidneyproximal tubular cells and cystine’s role in disease progression are
unknown.

Methods To investigate whether receptor-mediated endocytosis by the megalin/LRP2 pathway of ultrafil-
trated, disulfide-rich plasma proteins could be a source of cystine in proximal tubular cells, we used a mouse
model of cystinosis in which conditional excision of floxed megalin/LRP2 alleles in proximal tubular cells
of cystinoticmicewas achievedby aCre-LoxP strategy usingWnt4-CRE.Weevaluatedmice aged 6–9months
for kidney cystine levels and crystals; histopathology, with emphasis on swan-neck lesions and proximal-
tubular-cell apoptosis and proliferation (turnover); and proximal-tubular-cell expression of the major apical
transporters sodium-phosphate cotransporter 2A (NaPi-IIa) and sodium-glucose cotransporter-2 (SGLT-2).

Results Wnt4-CRE–driven megalin/LRP2 ablation in cystinotic mice efficiently blocked kidney cystine
accumulation, thereby preventing lysosomal deformations and crystal deposition in proximal tubular cells.
Swan-neck lesions were largely prevented and proximal-tubular-cell turnover was normalized. Apical ex-
pression of the two cotransporters was also preserved.

Conclusions These observations support a key role of the megalin/LRP2 pathway in the progression of
nephropathic cystinosis and provide a proof of concept for the pathway as a therapeutic target.

JASN 30: 2177–2190, 2019. doi: https://doi.org/10.1681/ASN.2019040371

In kidney proximal tubular cells (PTCs), recapture
of ultrafiltrated albumin and low molecular weight
(LMW) proteins is a major pathway leading to ly-
sosomes.1,2 Endocytosis efficiency in PTCs relies on
the tandem multiligand receptors, megalin/LRP2
(hereafter simply megalin) and cubilin, which are
abundantly expressed and undergo extremely fast
endocytosis and recycling.3–5 In turn, fast vesicular
trafficking relies on high expression in segment 1
(S1) of rate-limiting components of the endocytic
machinery depending on mammalian target of
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rapamycin 1 (mTOR1).6,7 Albumin, an abundant ligand in
PTC lumen shared by both endocytic receptors, is a globular
protein stabilized by 17 disulfide bridges and thus a precur-
sor of 17 cystine molecules. Similarly abundant LMW pro-
teins are additional precursors of cystine. Receptor-mediated
endocytosis in PTCs is abrogated upon megalin and cubilin
knockout (KO).8,9 Perinatal death of most full megalin KO
mice10 can be circumvented by kidney-specificmegalin/LRP2
gene excision (MegksKO mice); one copy of Wnt4–driven
Cre recombinase is sufficient to specifically excise the floxed
megalin/LRP2 gene in virtually all PTCs during nephrogen-
esis.9 Reports indicate megalin ablation does not affect over-
all PTC histology until approximately 9 months, but causes
atrophy of the apical endocytic apparatus (much fewer endo-
somal vacuoles and dense apical tubules) with secondary
effects on fluid-phase endocytosis and sodium-phosphate
cotransporter 2A (NaPi-IIa) trafficking.11,12 Megalin is also
the port of entry of nephrotoxic drugs, such as aminoglyco-
sides,13 and this megalin pathway can be targeted by inhibi-
tory drugs.14 Alternatively, apical PTC endocytosis can be
acutely blocked by bolus intravenous injection of dibasic
amino acids (especially lysine) in human volunteers15 and
by 1-day oral lysine gavage to rats,16 but long-term inhibition
has not yet been reported.

Nephropathic cystinosis, in brief “cystinosis,” is a rare lyso-
somal storage disease and the main cause of hereditary renal
Fanconi syndrome (reviewed in 16; for perspective, see 17). De-
letion or inactivating mutations of the cystinosin gene (CTNS),
encoding the only known lysosomal cystine/hydrogen ion sym-
porter, leads to cystine accumulation and characteristic crystals
at acidic pH.17 Cystine is an obligatory end-degradation product
of disulfide-rich proteins,18 and its accumulation in cystinotic
fibroblasts is proportional to the absolute endocytic velocity and
relative disulfide abundance in endocytic cargo.19,20 Cultured
cells also internalize amino acids, and thus cystine, by fluid-
phase endocytosis.21 The source of lysosomal cystine in vivo is
unknown.22

Although lysosomal cystine accumulation occurs in all
tissues of patients with nephropathic cystinotic, the kidneys
and eyes are first affected. The earliest clinicalmanifestation is
usually a renal Fanconi syndrome combining urinary losses of
solutes andLMWproteins. In kidneys, cystinosis leads to PTC
apical dedifferentiation and flattening/atrophy, starting at
the glomerulo-tubular junction (GTJ) and extending longi-
tudinally downstream (swan-neck deformities);23 interstitial
fibrosis; glomerular lesions; and kidney failure.24 Swan-neck
lesions are considered an early adaptation to PTC insult
and precede glomerulo-tubular disconnection resulting
into atubular glomeruli.25–27 Very early, diligent implemen-
tation of compliant cysteamine (a cystine-depleting agent
and currently the only drug approved by the Food and
Drug Administration) treatment was reported to preserve
kidney, growth, and thyroid function for over a decade;28

but long-term surveys of large cohorts show delayed progres-
sion to kidney insufficiency and other failures, and little control

of the Fanconi syndrome, thus calling for novel therapeutic
approaches.29,30

Ctns2/2 mice on congenic C57BL/6 background closely
reproduce the kidney disease,26,31,32 except for a mild/
incomplete Fanconi syndrome that has been further vanish-
ing in several colonies including ours, probably due to in-
breeding. This mouse model nevertheless was instrumental
for deciphering pathogenic and adaptation mechanisms.
Pathogenic mechanisms are either transport-related or
-independent defects24; their respective contribution to
nephropathic cystinosis is unknown. Transport-independent
defects include alterations of endolysosomal trafficking,33 of
macroautophagic34,35 and chaperone-mediated autophagic
fluxes,36 of mTOR complex 1 activation,37 as well as propen-
sity to kidney inflammation.38 Several adaptation mechanisms
have been evidenced: (1) early apical PTC dedifferentiation
offering reduced workload, as shown by repressed expression
of endocytic receptors (megalin and cubilin) and apical solute
transporters (main symporters for phosphate, NaPi-IIa, and
glucose, sodium-glucose cotransporter-2 [SGLT-2]); (2) active
luminal crystal exocytic discharge; and (3) increased PTC turn-
over with crystal disposal by luminal apoptotic shedding
and PTC regeneration by proliferation, which provides fresh
lysosomes.26

Calculations predict that uptake of disulfide-rich proteins
such as albumin could be the major source of lysosomal cys-
tine accumulation in cystinotic PTCs and thus represent a
potential therapeutic pathway.24,26 We tested this hypothesis
by generating a triple transgenic model: Ctns2/2;Wnt4-CRE;
MegFl/Fl, referred to hereafter as Ctns2/2/MegksKO or simply
“double KO” mice. Data show that megalin ablation (1)
blocks cystine accumulation, thereby preventing crystal de-
position in cystinotic kidneys; (2) protects PTCs from struc-
tural lesions; and (3) normalizes PTC turnover. The apical
expression of NaPi-IIa and SGLT-2 is largely preserved in
Ctns2/2/MegksKO mice. These observations support a key
role of endocytosis in the progression of nephropathic cysti-
nosis and pave the way to medical intervention targeting the
megalin pathway.

Significance Statement

Nephropathic cystinosis is the result of deletion or inactivating
mutations of the gene encoding the lysosomal cystine transporter
cystinosin, but the extent to which disease progression depends on
cystine accumulation or transport-independent effects of cystinosin
is unknown. Cysteamine, the current treatment to prevent cystine
accumulation, delays progression to renal failure but does not
correct theFanconi syndromenordoes itprovideacure.Theauthors
demonstrate that suppression of endocytosis in kidney proximal
tubular cells of cystinosin-deficient mice by genetic excision of
megalin/Lrp2 largely prevents cystine accumulation and can help
preserve kidney structure and proximal tubular cell differentiation.
These observations stress the importance of cystine accumulation in
disease progression and provide proof of concept for exploring
novel strategies aiming at blocking the megalin pathway.
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METHODS

Mice and Genotyping
Congenic C57BL/6J Ctns2 /2 mice and Wnt4-Cre mice
(C57BL/6) have previously been described.31,39 Mice bearing
themegalin loxP/loxP gene40 were initially generated by Dr. T.
Willnow. For genotyping, PCR on DNA extracted from tail
samples was used to identify mice bearing wild-type (WT),
cystinotic, and floxed megalin alleles. The cystinosin allele
was analyzed with pairs of primers centered on exon 10
(Ex10 forward, 59-CTCCAGATGTTCCTCCAGTC-39; and
Ex10 reverse, 59-AGTCCGAACTTGGTTGGGT-39) and on
the cassette (K7 forward, 59-GCAGGAATTCGATATCAAGC-
39; and K7 reverse, 59-AAAGTGGAGGTAGGAAAGAGG-39).
The size of the amplicons revealing the WTand the transgenic
Ctns allele were 260 and 215 bp, respectively. For megalin
genotyping, a common forward primer (59-AGGCTCC-
GACTTCGTAACTG-39) was used with two reverse primers
to amplify the WT (59-TGAAAACCACACTGCTCGATCCG-
GAAC-39) and/or the floxed allele (59-ACCTTGCGT-
GAATTCTGGG-39). The size of the amplicons was approximately
300 bp for the WT allele and approximately 400 bp for the
floxed allele. Presence of theWnt4-CRE transgene was assessed
using forward and reverse primers (Cre forward, 59-GCACGTT-
CACCGCATCAAC-39; and Cre reverse, 59-CGATGCAAC-
GAGTGATGAGGTTC-39; product size 332 bp). Experiments
were approved by the Ethical Committee of the Medical School
of the Université Catholique de Louvain (2016/UCL/MD/006
and 2018/UCL/MD/026). Mice were treated according to
the National Institutes of Health Guide for Care and Use
of Laboratory Animals, and used with parsimony.

Tissues
After blood collection, mice were exsanguinated with PBS
by perfusion via the left ventricle under irreversible anes-
thesia by 2% xylazine and 50 mg/ml ketamine (250 ml per
mouse, intramuscularly). Fresh tissues (left kidney, spleen,
and one liver lobe) were immediately collected using vas-
cular clamps to maintain a closed blood circulatory system,
and right kidneys were then fixed in situ by switching to
whole-body perfusion fixation with cold (4°C, nominal)
4% formaldehyde (from heat-depolymerized paraformal-
dehyde) in 0.1 M phosphate buffer, pH 7.4, for approxi-
mately 3 minutes. They were then excised, decapsulated,
and weighed. Hemi-sagittal sections were postfixed by im-
mersion in 4% formaldehyde at 4°C under gentle stirring
overnight. Samples were paraffin embedded and 7-mm-thick
sections were collected for histology and confocal fluorescence
imaging.

Cystine Assays
A quarter of the unfixed left kidney was homogenized into
600 ml of 5.2 mM N-ethylmaleimide (Sigma-Aldrich) in
103 diluted PBS and briefly sonicated, then 200 ml of
12% 5-sulfosalicylic acid (dehydrated; Merck-Millipore)

was added. Samples were vortexed and frozen at 280°C.
Cystine assays were carried out by liquid chromatography–
tandem mass spectrometry (liquid chromatography–MS/
MS) as previously described41 with modified MS/MS detec-
tion42 and normalized to kidney protein. Briefly, the extract
was microfuged at 13,000 rpm for 10 minutes at 4°C. The
residual pellet was resuspended in 1 ml of 0.1 N sodium
hydroxide for protein assay by the Lowry method using
BSA as standard. Cystine assays were performed on 50 ml
of supernatant, diluted in water if necessary (according to
the 0.2–10 mM cystine calibration). After butylation, final
samples were resuspended in 100 ml water and 15 ml was
injected into liquid chromatography–MS/MS (Quattro mi-
cro; Waters).

Visualization of Cystine Crystals
To highlight cystine crystals by polarized light microscopy,
a quarter of the perfused-fixed kidneys were instead postfixed
by immersion in alcoholic Bouin solution at 4°C overnight,
and then paraffin embedded without any passage in aqueous
medium. Sections were deparaffinized and mounted with Q
Path Coverquick 3000 mounting medium (Labonord). Slides
were analyzed by polarized microscopy at high then low light
intensity (highlighting crystals) and recorded images were
pseudo-colored in green.

Histology, Multiplex (Immuno)Fluorescence, and
Morphometry
Sectionswere stainedwithhematoxylinandeosin.For(immuno)
fluorescence, antigen retrievalwas promoted in citrate buffer, pH
6, at 95°C for 20minutes using a Lab Vision PretreatmentMod-
ule (Thermo Scientific). Tissue was permeabilized with PBS/
0.3% Triton X-100 for 5 minutes, and then for a further
1 hour with 10% BSA/3% milk to block nonspecific sites. Sec-
tions were incubated overnight at 4°C with the following pri-
mary reagents in blocking buffer: sheep anti-megalin (1:800;
kindly provided byDr. P. Verroust andDr. R. Kozyraki, INSERM
U968, Paris, France), rat anti–lysosome-associated membrane
protein-1 (anti–LAMP-1; 1:100, 1D4B; Hybridoma Bank), rab-
bit anti–mouse NaPi-IIa (NaPi-IIa carboxy-terminal peptide,
1:1000; a kind gift from Dr. J. Biber and Dr. C. Wagner, Zurich,
Switzerland), rabbit anti–human SGLT-2 (1:100, sc-98975;
Santa Cruz Biotechnology), mouse anti-Ki-67 (1:250, 556003;
BD-Pharmingen), rabbit anti–active caspase-3 (1:200, 9661; Cell
Signaling), or biotinylated Lotus tetragonolobus lectin (1:100;
Vector Laboratories). After washing, sections were further in-
cubated with the appropriate Alexa Fluor secondary
antibodies and/or streptavidin (Invitrogen) or Hoechst bisben-
zimide H 33258 (Sigma-Aldrich) for 1 hour at room tempera-
ture in 10% BSA/0.3% Triton X-100, mounted with Faramount
Aqueous Mounting Medium (Dako), and imaged on a spinning
disk confocal microscope using an EC Plan-NeoFluar 403/1.3
or 1003/1.4 oil differential interference contrast objective (Cell
Observer Spinning Disk; Zeiss). Differential interference con-
trast (Nomarski microscopy) images were obtained using
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Figure 1. Generation and validation of Ctns/Meg double KO in kidneys. (A) Genotyping: Cystinosin and megalin floxed alleles were
identified by PCR on tail DNAs. For cystinosin, WT exon 10 (E10) or cassette (IRES-bgal-neo) replacing the last four exons (vertical black
bars) of Ctns were amplified with two different oligonucleotides pairs (horizontal red bars), allowing for identification of WT, hetero-
zygous, and Ctns2/2 mice. For megalin, a common forward oligonucleotide was used with two different reverse oligonucleotides
specific to the WT or floxed allele, containing LoxP recombination sites (blue triangles). Amplification of the Wnt4-CRE locus is not
depicted. (B) Crossings: This crossing program aimed at comparing mice with various genotypes strictly derived from the same
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bright-field microscopy, with a polarizing filter added between
the light source and the condenser, and a Wollaston prism to
increase the contrast. Alternatively, whole kidney images (his-
tology and fluorescence) were acquired using a Pannoramic
250 Flash III microscope (3DHistech).

At least four mice were analyzed for each condition. Swan-
neck morphometry was performed by survey of an entire sag-
ittal section across the hilum. In 32 such sections (including
all controls, single KOs, and double KOs except the case men-
tioned hereafter), on average 2168 GTJs per section were
identified (mean6SD, range 8–36). One double KO mouse
at 9 months with less than five GTJs identified was rejected.
Comparison of the three groups by Mann–Whitney test
showed no significant difference in GTJ abundance, but sig-
nificant difference in frequency of swan-necks (Supplemental
Methods).

Statistical Analysis
All statistical analyses were conducted by Prism software
(GraphPad Software) using the nonparametric Mann–
Whitney test. Differences were considered statistically sig-
nificant when P,0.05.

RESULTS

Wnt4-CRE–Driven, Kidney-Specific Megalin Ablation in
Cystinosin KO Mice and Validation of the Model
The breeding program used to achieve triple transgenic mice
(Ctns2/2/MegksKO or double KO), genotyped as shown at
Figure 1A, is outlined at Figure 1B. Because the cystinotic
renal phenotype inCtnsKOmice strongly depends on genetic
background,31 breeding was designed to compare kidneys
of “control” (Ctns+/2), single Ctns KO (Ctns2/2), single
ksMeg KO (Wnt4-CRE; MegFl/Fl), and double KO (Ctns2/2;
Wnt4-CRE; MegFl/Fl) mice derived from the same C57BL/6J
founders. Genotypes of all offspring followed expected Men-
delian proportions. There was no significant difference in
body growth or kidney weight between all genotypes up to
9months (longest endpoint; Supplemental Figure 1), indicat-
ing phenotype attenuation since the original report.31 At the
time of euthanasia, urinary signs of partial Fanconi syn-
drome, previously reported to discriminate Ctns2/2 mice
from control littermates,26,31 were no longer found, which
was also noticed in Ctns2/2 colonies at other laboratories.
There was also no significant alteration in urea and creatinine
plasma values, except for increased mean urea in double KO

mice at 9 months (74.5626.0 mg/dl, P,0.05 versus 54.668.1
in control and P,0.05 versus 51.2611.6 in Ctns2 /2 ;
means6SD). This paradoxic increase will be explained here-
after. Confocal immunofluorescence, using proximal tubule-
specific labeling by L. tetragonolobus lectin as a reference,
showed almost complete disappearance of megalin
expression in double KO PTCs (Figures 1C and 2C). Thus,
Ctns2/2/MegksKO mice appeared adequate to test the role of
endocytosis in the progression of kidney lesions in cysti-
notic mice. However, histology revealed in the cortex of
about half, but not all, single ksMeg KO and double KO
mice massive periarterial lymphocyte collections and ex-
tending inflammation, causing large zones with gross tissue
remodeling after 6 months (see further in Figure 3 and Sup-
plemental Figure 6, A and B). These mice were not excluded
from the assays but conclusions reported hereafter for dou-
ble KO were validated for mice without such extensive re-
modeling zones.

Megalin Ablation in Ctns2/2 Kidneys Blocks Cystine
Accumulation in Lysosomes and Prevents Crystal
Deposition
To assess whether suppressing endocytosis into PTCs by ge-
netic megalin ablation would prevent cystine accumulation,
we first performed cystine assays in kidneys at 6, 7.5, and 9
months of age in each genotype. At all time points, renal
cystine levels in Ctns2/2 mice were significantly different
from control (Ctns+/+, Ctns+/2) and single ksMeg KO mice
(Supplemental Figure 2).We thus focused on the comparison
of renal cystine levels between Ctns2/2 and double KO mice.
As positive controls of cystinosis and negative controls of
megalin ablation, we also assayed cystine in liver and spleen,
in which theWnt4 gene is not expressed (Figure 2A, Supple-
mental Figure 2). In Ctns2/2 kidneys, cystine accumulation
increased exponentially with age, reaching on average 103
nmol hemi-cystine/mg tissue protein at 9 months, in good
agreement with Nevo et al.,31 but this leveled off at 13 nmol
hemi-cystine/mg tissue protein in double KO kidneys. Thus,
kidney-specific megalin gene ablation in Ctns2/2 almost en-
tirely suppressed kidney cystine overload. In contrast, there
was no consistent change in cystine levels in spleen or liver.
Suppression of cystine accumulation could not be explained
by modifier genes associated with MegFl or Wnt4-CRE loci,
because two double transgenic Ctns2/2; MegFl/Fl mice and
at least one Ctns2/2; Wnt4-CRE mouse—all expected to ex-
press megalin normally—still showed high kidney cystine
levels (red or green color code in Figure 2A). In Ctns2/2

founders. Offspring were observed at the expected Mendelian proportions. (C) Validation of Wnt4-CRE–driven excision of megalin in
double KO mice by double confocal fluorescence (6 months): Low-power view for megalin immunofluorescence in green, and apical
labeling of PTCs by L. tetragonolobus lectin (LT-lectin) in red. Single channels at left and center, merged emission at right combined with
nuclear labeling by Hoechst (blue). As compared with control (CTL; all labeled tubular sections appear yellow), note the almost complete
disappearance of megalin in double KO (very few yellow tubular sections).
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panel) in Ctns2/2 kidneys (a, b, c, d) versus their absence in double KO kidneys at 7.5 months (e, f). For large fields, see Supplemental

2182 JASN JASN 30: 2177–2190, 2019

BASIC RESEARCH www.jasn.org

http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2019040371/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2019040371/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2019040371/-/DCSupplemental


PTCs, lysosomal cystine accumulation results in lysosomal
swelling and then deformities due to cystine crystallization
at the acidic lysosomal pH.26,31 Cystine crystals, readily evi-
denced in Ctns2/2 PTCs by polarized microscopy, were no
longer detected upon megalin ablation (Figure 2B, Supple-
mental Figure 3). Of note, no crystals were detected in atro-
phic Ctns2/2 PTCs at swan-neck deformities.

Moreover, lysosome labeling by LAMP-1 immunofluores-
cence revealed frequent lysosomal dilation and characteris-
tic deformation by crystals in Ctns2/2 PTCs but never in
Ctns2/2/MegksKO, indicating protection against lysosomal ab-
normalities (Figure 2C). Altogether, these data demonstrated
that genetic abrogation of apical endocytosis into Ctns2/2

PCTs was very efficient in preventing cystine accumulation,
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Figure 3. Histology of cystinotic kidneys is preserved upon megalin ablation (whole-cortical views after staining with hematoxylin and
eosin at 6 and 9 months). Broken yellow lines delineate inflammatory areas with parenchymal atrophy at 9 months (*). Representative
GTJs are enlarged. In single Ctns2/2 KO mice at 9 months, small foci of atrophy are always present but limited to the superficial
cortex. For double KO and single MegksKO KO kidneys at 9 months, two examples are shown to illustrate either absence or presence of
grossly remodeled areas that can span the entire cortex (see also Supplemental Figure 6B). CTL, control.

Figure 3. (C) Triple confocal fluorescence imaging of N-fucosyl glycosides (LT-lectin, blue), megalin (red), and late-endosome/lysosome
membrane (LAMP-1, green) at 6 months. In control PTCs, brush border is uniformly purple (combined blue and red emissions); lysosomes
are all round and of similar size. In Ctns2/2 PTCs, notice several enlarged and deformed lysosomes due to cystine crystal buildup (red
arrowheads); brush border is preserved here. In double KO PTCs, brush border is only labeled in blue in most cells, reflecting megalin
absence, and LAMP-1 signal is much reduced by comparison with controls as a consequence of abrogation of endocytic uptake. LT-lectin,
L. tetragonolobus lectin.
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indicating the endocytic pathway is indeed the key source of
cystine storage in nephropathic cystinosis.

Megalin Ablation in Ctns2/2 Kidneys Preserves
Proximal Tubular Structure
As in cystinotic children,23 mouse Ctns2/2 kidneys show typ-
ical swan-neck lesions after 6 months.26,27 To determine
whether Megalin ablation would further protect the proximal

tubule structure, we compared double KO
with Ctns2/2 full-kidney sagittal sections
by histology after staining with hematoxy-
lin and eosin (Figure 3, quantified in Figure
4A) and by plastic sections of smaller
blocks after toluidine-blue staining (Sup-
plemental Figure 4). The majority of GTJs
inCtns2/2 kidneys from 6–9months of age
showed typical swan-neck lesions, with ap-
parently increasing prevalence with age, in
good agreement with morphometry by
Galarreta et al.27 In contrast, only approx-
imately 20% of GTJs in double KO showed
swan-neck pattern without increase in age.
This conclusion was confirmed by confocal
microscopy based on L. tetragonolobus lec-
tin labeling, as a general apical proximal
tubule marker for brush border and apical
endocytic apparatus, combined with meg-
alin immunofluorescence. In control mice,
double labeling produced a yellow signal.
In Ctns2/2 kidneys, both signals were sup-
pressed at most GTJs and downstream. In
double KO PTCs, lectin labeling was largely
preserved (Figure 4B). Thus,Megalin abla-
tion in Ctns2/2 kidney protected against
overall PTC dedifferentiation and atrophy.
Electron microscopy confirmed the preser-
vation of double KO PTCs, except for atro-
phy of the apical endocytic apparatus and
paucity of lysosomes, which was also the
case in single MegksKO KOs (Supplemental
Figure 5).

Megalin Ablation in Ctns2/2 Kidneys
Preserves the Apical Expression of
NaPi-IIa and SGLT-2 in PTCs and
Prevents Increased PTC Turnover
Dedifferentiation of cystinotic PTCs, start-
ing at theGTJ, includes loss of expression of
megalin and cubilin, as well as of the main
sodium-phosphate symporter, NaPi-IIa,
and the main sodium-glucose symporter,
SGLT-2, which are all relevant to Fanconi
syndrome.26 Because swan-neck lesions
are considered an early adaptation to PCT
insult,26,27 we next addressed whether dou-

ble KO PTCs would escape this defensive mechanism. As
shown by immunolabeling for NaPi-IIa (Figure 5A) and
SGLT-2 (Figure 5B), all Ctns2/2 cortices showed diffuse loss
of expression of both transporters, yielding a mottled appear-
ance at low magnification, but double KO preserved expres-
sion, except at large inflammatory areas where histology was
grossly altered (for whole-cortical views, see Supplemental
Figure 6, A and B). Because urinanalysis of Fanconi syndrome
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Figure 4. Megalin ablation in Ctns2/2 kidneys prevents swan-neck lesions at GTJs. (A)
Quantification of swan-neck lesions in Ctns2/2 versus double KO mice from 6 to 9
months of age as percentage of all well defined GTJs over the entire sagittal kidney
section, except at large inflammatory zones, as illustrated at Figure 3. *P,0.05,
**P,0.01, nonparametric Mann–Whitney test). (B) Triple fluorescence confocal im-
aging with reference to differential interference contrast (DIC) imaging in Ctns2/2

versus double KO mice at 6 months of age for L. tetragonolobus lectin (LT-lectin)
labeling (red) and megalin (green) combined with nuclear Hoechst labeling (blue).
Contours of GTJs are delineated by yellow broken lines. Notice in the central image
that megalin is not detected at this representative Ctns2/2 GTJ due to de-
differentiation/atrophy, but is preserved in more distal PTCs, together with LT-lectin
labeling (yellow *). In contrast, the right image shows that megalin inactivation in
Ctns2/2 kidneys (no green signal) generally preserves PTC thickness and LT-lectin
labeling at the GTJ. CTL, control.
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was no longer relevant due to loss of this phenotype in our
Ctns2/2 colony, we performed quantitative RT-PCR mea-
surements of cubilin, NaPi-IIa, and SGLT-2 mRNAs at
9 months (Supplemental Figure 7). There was a consistent
decreasing trend in Ctns2/2 kidneys as compared with con-
trol littermates, in agreement with previous reports,26,32

contrasting with apparent protection in double KO, al-
though differences did not reach statistical significance. Al-
together, immunofluorescence and quantitative RT-PCR
data were compatible with the hypothesis that the Fanconi
syndrome of nephropathic cystinosis could be attenuated
by targeting the megalin pathway.

Another adaptation mechanism to cystine overload in
Ctns2/2 PTCs is cell death, including by apoptotic shed-
ding leading to luminal crystal discharge, coupled with
compensatory proliferation, i.e., replenishment by dividing
cells to yield fresh lysosomes.26 In contrast to Ctns2/2 cortices,
apoptosis and proliferation (monitored by cleaved caspase-3
and Ki-67 immunofluorescence, respectively) were not detect-
ably increased in double KO cortices, indicating no change in
PTC turnover (Figure 6). Thus,megalin ablation in cystinotic
kidneys, which suppressed exogenous cystine supply, also
normalized apoptosis and proliferation rates.

DISCUSSION

This report demonstrates genetic ablationof themegalin/LRP2
pathway in cystinotic kidneys (1) suppresses cystine accumu-
lation and crystal deposition, (2) protects tissue structure
(except for grossly remodeled areas), and (3) preserves PTC
differentiation and presumably function. This benefit was ob-
served throughout the kidney cortex outside of those grossly
remodeled areas, as expected from early Wnt4-CRE–driven
excision, and is consistent with megalin being the cornerstone
for PTC endocytosis in S1 (and S2) segments.6,7,43 Using
Wnt4-CRE, double megalin/cubilin KO causes higher albu-
minuria than single megalin KO (1.5-fold) and single cubilin
KO (threefold).9 However, full inhibition of endocytosis is not
needed for a major benefit on cystine level in cystinotic PTCs,
because a significant fraction of cystine released in lysosomes
can be further disposed of by apical vesicular efflux (discussed
in 24). Conversely, side effects like suppressed endocytic supply
of potential nephroprotective proteins, such as iron sidero-
phore neutrophil gelatinase-associated lipocalin44 or survi-
vin,45 must be taken into account and could explain the 20%
of swan-neck lesions in double KO kidneys. Alternatively, these
residual lesions could be due to a defective nontransport func-
tion of cystinosin. Perinatal ablation of the megalin pathway,
used here as an experimental artifact, should not be confused
with the natural course of nephropathic cystinosis where recep-
tor-mediated endocytosis in S1/S2 spontaneously declines after
3–6 months as part of adaptive dedifferentiation to decrease
workload.26,27,32 Conceivably, secondary attenuation of apical
endocytosis might be mediated by impaired mTOR signaling
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Figure 5. Protection against apical dedifferentiation in double KO
kidneys. Double (or triple, Hoechst in blue) confocal fluorescence at
6 months for L. tetragonolobus lectin (LT-lectin) labeling (red), and
either (A) NaPi-IIa or (B) SGLT-2 in green. Top panels, GTJs; bottom
panels, enlargement of representative proximal tubule sections. On
the left, notice in control (CTL) PTCs restriction of NaPi-IIa and SGLT-
2 to the brush border but extension of LT-labeling subapically, re-
sulting in apical label stratification. In Ctns2/2 PTCs (central panels),
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absent (arrowheads indicate sharp boundary with preserved cells).
On the right, megalin ablation in Ctns2/2 kidneys preserves apical
signal of LT-lectin and NaPi-IIa or SGLT-2; stratification is lost due to
atrophy of subapical endocytic apparatus. For whole-cortex views,
see Supplemental Figure 6, A and B. For RT-PCR, see Supplemental
Figure 7. DIC, differential interference contrast; glom, glomerulus.
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due to absence of cystinosin,37 which negatively affects the apical
endocyticmachinery.6 Conversely, nonrecaptured disulfide-rich
proteins are reclaimed by more distal cells, which in turn get
affected.26 This would readily explain distal/longitudinal disease
extension (see Visual Abstract).

Megalin/LRP2 ablation in mice and in-depth study of pa-
tients with Donnai–Barrow syndrome46 (who have genetic
megalin/LRP2 deficiency) were instrumental in establishing
its multiple roles in kidney physiology (reviewed in 47). Endo-
cytic receptor KO models have also been essential to revise
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Figure 6. Megalin ablation in Ctns2/2 kidneys protects against apoptosis and prevents increased PTC turnover. (A) Triple fluorescence
confocal imaging for L. tetragonolobus lectin (LT-lectin) signal as proximal tubule marker (represented in white), caspase-3a (cleaved,
active caspase-3) as apoptotic marker (green), and Ki-67 as proliferation marker (red) in representative low-power views. Notice in-
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or refine concepts involving the role of proteinuria as a risk
factor to kidney insufficiency48 or the still-debated albumin
transcytotic recycling route.49 Here, megalin KO revealed that
endocytosis is the major pathway for the accumulation of cys-
tine in nephropathic cystinosis, and provided proof of concept
for the megalin pathway as therapeutical target. Because the
kidney phenotype in Ctns2/2 mice critically depends on the
genetic background, we ensured that we compared mice de-
rived from the same founders and excluded a role of floxed
megalin and Wnt4-CRE loci. This concern was particularly
important for the Wnt4-CRE locus because the gene coding
for CdC42, key regulator of apical differentiation, lies imme-
diately behind the Wnt4 gene on Mus musculus chromosome
4, locus D3. A limitation of our study is the inflammatory/
immune reaction causing gross tissue remodeling in approx-
imately half of mice at 9 months. This unexplained side effect
ofWnt4-CRE–driven megalin excision (not reported in other,
less complete, megalin KO models) likely explains the para-
doxic increase (and large variation) of average plasma urea
concentration in double KO mice at 9 months. However, the
resulting gross remodeling is very different from the diffuse
mottled appearance in Ctns2/2 kidneys. Moreover, cortex be-
tween extensively remodeled areas in affected double KOmice as
well as the entire cortex in double KO mice without remod-
eling showed remarkable structural protection. Thus, we feel
it is safe to conclude that structural protection in double KO
mice could be attributed to genetic ablation of the megalin
pathway, and that suppression of this pathway by other
means, not inducing gross inflammatory remodeling, could
represent a desirable objective.

Our starting hypothesis was that receptor-mediated endo-
cytosis of ultrafiltrated, disulfide-rich plasma proteins—
exemplified by, but not limited to, albumin—was the main
cystine source of PTCs. However, calculations indicate the
much higher concentrations of free as compared with protein-
bound cystine in the primary ultrafiltrate (approximately
two orders of magnitude higher) may balance the much lower
efficiency of fluid-phase versus receptor-mediated endocytosis
(approximately two orders of magnitude lower)50,51 so that
contribution of fluid-phase endocytosis to cystine supply21

into normal PTCs cannot be a priori neglected. Moreover,
because megalin ablation not only arrests receptor-mediated
endocytosis but also causes a marked atrophy of the apical
endocytic apparatus and impairs fluid-phase endocytosis,12

data in this report do not allow us to discriminate the two
modes of endocytosis. The term “megalin pathway” used
here intends to cover both mechanisms. Further studies, e.g.,
by direct megalin competition for protein binding, are neces-
sary to clarify this issue.

Acute suppression of the megalin pathway can be achieved
by inhibitionwith dibasic amino acids, as shownwith cultured
cells16,52 and by bolus injection into human volunteers,15 per-
fusion in patients with cancer to prevent nephrotoxicity of
radiochemicals,53 or oral gavage in rats.16 Long-term supple-
mentation with arginine in man is considered safe,54 is part

of the treatment of genetic diseases of the urea cycle,55 and is
commonly used by body builders. Long-term supplementa-
tion with lysine is used for prevention of gyrate atrophy in
hereditary ornithinemia.56 Preliminary data from our labora-
tory have shown that dietary supplementation of Ctns2/2

mice by L-lysine or L-arginine can significantly decrease kid-
ney cystine accumulation and swan-neck lesions. However,
dibasic amino acids can affect several metabolic pathways57

and have several potential cellular targets, such as direct com-
petition for receptor binding, inhibition of endocytic traf-
ficking, and/or stimulation of the mTOR pathway58 which is
defective in cystinotic cells.37 Thus, besides the need for con-
firmation in large cohorts, further mechanistic studies are
required to clarify the mechanism of protection upon long-
term supplementation.

The respective roles in the pathogeny and manifestations
of nephropathic cystinosis of cystine transport-dependent (de-
fined as cysteamine-responsive) versus transport-independent
(cysteamine-insensitive, reviewed in 24) functions of cysti-
nosin, is also unknown. Cysteamine insensitivity of Fanconi
syndrome contrasts with improved kidney outcome upon
early compliant drug implementation.30,59 Delayed pro-
gression to kidney insufficiency stresses the importance
of effective cystine kidney clearance, although actual level
of depletion, inferred from leukocyte assays, may not be
complete in kidneys, as suggested in cysteamine-treated
Ctns2/2 mice.60 Our article sheds more light on this debate
by evidencing a causal link between cystine accumulation
and structural dedifferentiation of PCTs in the mouse
model, because prevention of cystine overload correlated
with structural preservation; thus these results somewhat
swing the pendulum back toward the pathogenic role of
cystine overload.
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